DARREN VAUX President of ICOMIA

FRANK HUGELMEYER President of NMMA

PROPELLING OUR FUTURE

- 1. Signed by 196 countries or parties
- 2. Global warming of 1.5deg C above pre-industrial levels is the 'tolerable' limit
- 3. To achieve 1.5deg GHG must peak before 2025 and decline by 43% by 2030
- Current forecasts are that we are not on track to meet this.

Global Greenhouse Gas (GHG) Emissions

Recreational Marine Industry accounts for less than 0.1% of Global GHG

Our Challenge is Perception

Boating enriches people's lives

The Ricardo Study

RICARDO – ICOMIA – GREENHOUSE GAS REDUCTIONS IN MARINE LEISURE PROPULSION

DRAFT LIFE CYCLE ASSESSMENT (LCA)

RICARDO - ICOMA - GREENHOUSE GAS REDUCTIONS IN MARINE LEISURE PROPULSION - DRAFT FINAL REPORT

TO CREATE A SAFE AND SUSTAINABLE WORLD

LINC **OUR FUTURE**

Technologies Investigated

Fishing boat

Suitability Analysis of 5 Power System Options

Gasoline or diesel ICE

(HVO or E-gasoline)

Runabout / day cruiser

Pontoon boat

Hybrid-electric

PWC

For 9 Craft Categories

Inland waterway vessel

Battery electric

Displacement motorboat

Inflatable boat

H₂ ICE or fuel cell

Sailing yacht

Craft Usage Profile (Baseline)

Craft	Length (m)	Fuel	Power (kW)	Fuel(L)	Engine Hrs pa	Life (Y)
Inflatable Tender	4	Gasoline	30	70	35	10
Fishing Boat	5.5	Gasoline	110	170	35	38
Displacement Motorboat	14	Diesel	150	1080	48	45
High Performance Yacht	19	Diesel	2000	4100	130	50
Sailing Yacht	11	Diesel	20	70	24	45
Pontoon Boat	7	Gasoline	170	175	35	38
Runabout	8	Gasoline	260	270	43	30
PWC (Hire)	3.6	Gasoline	155	70	156	12.5
Inland Waterway Vessel	10.8	Diesel	42	400	48	50

Energy Density - How each technology impacts the craft

The Results

RICARDO

RICARDO – ICOMIA – GREENHOUSE GAS REDUCTIONS IN MARINE LEISURE PROPULSION

DRAFT LIFE CYCLE ASSESSMENT (LCA) BACKGROUND REPORT FOR ICOMIA

TO CREATE A SAFE AND SUSTAINABLE WORLD

Vincipal Consultant Ricardo Energy and Envi

RICARDO - ICOMMA - GREENHOUSE GAS REDUCTIONS IN MARINE LEISURE PROPULSION - DRAFT FINAL REPORT

RICARDO

Task 1	Decarbonisation Options Overview of each propulsion system type including systems required, impact on craft, infrastructure required and fuel supply options	ſ	-
Task 2	Greenhouse Gas Life Cycle Assessment (LCA) Lifecycle assessment to ISO 14044 and 14067 including manufacture, use phase and end of life for energy converters and energy carriers		RICARDO - ICOMIA - G Project Nu Document Date
Task 3	Total Cost Of Ownership Purchase cost and operational costs including energy and maintenance for energy converters, energy carriers and new infrastructure		Confidenti Authors Contribute
Task 4	Boat Power Systems Implications Analysis of life expectancy, maintenance requirements, performance, safety and commercial availability		Approved
Task 5	Infrastructure Implications Analysis of life expectancy, safety, expected availability of fuels or energy		
Task 6	Suitability And Ranking Overall suitability of different options for each craft type and usage case		558

ICOMIA INTERNATIONAL COUNCEL OF MARINE ENDUSTRY ASSOCIATIONS

OUR FUTURE

RICARDO - ICOMIA - GREENHOUSE GAS REDUCTIONS IN MARINE LEISURE PROPULSION - FINAL REPORT			
Project Number	Q024755		
Document Number	RD22-002958-6		
Date	13 July 2023		
Confidential	ICOMIA		
Authors	Albert Zenié, Katie Lam, Rachel Jobson, Sam Hinton, Nikos Vasileiadis, Tim Scarbrough, Sofia Condes		
Contributors	Richard Osborne, Philip Hopwood, John Hughes, Matthew Keenan, Hassan Malik, Alec Davies, Gael Chouchelamane, Bahareh Yazdani Damavandi, Richard King, Richard Cornwell, Geoff Pownall, Nikolas Hill, Rob Parkinson		
Approved	Dr. Nick Powell Principal – Technology Strategy Ricardo Strategic Consulting Nick.powell@ncardo.com		
Creating a	world fit for the future		

RICARDO

558 Page Report

Key Finding

There is **"no one size fits all"** solution to reduce the carbon emissions of propulsion

Carbon Footprint in Each Stage of Life

Manufacture Usage End of Life **Total Carbon Impact: Total Carbon Impact:** A Typical Small Boat A Typical Car 5 10 10 50 **40** 85 *##300 a · 6 63 ICOMIA PROPELLING OUR FUTURE * Based on conventional ICE propulsion 13

What the majority of cars are doing right now...

What the majority of boats are doing right now...

Pontoon Boat

Use Case Assumptions

Annual Utilisation (hours)	
Lifespan (years)	

ICOMIA

38

35

Results

OUR FUTURE

- Switching to sustainable marine fuel would have the biggest impact.
- Benefits of other technologies restricted by low utilisation scenarios.

Displacement Motorboat

Use Case Assumptions

Annual Utilisation (hours)	
Lifespan (years)	

Results

- Switching to sustainable marine fuel would have the biggest impact.
- Electric propulsion would present too great of range compromise.

48

45

16

Sailing Yacht

Use Case Assumptions

ICOMIA

Annual Utilisation (hours)	24
Lifespan (years)	45

Results

OUR FUTURE

- Sustainable marine fuel would have the biggest impact.
- The long life and low annual engine hours make it impossible to offset the manufacturing impact of other technologies.

High Performance Motoryacht

Results

- All alternative technologies could present an opportunity.
- Hydrogen presents an interesting opportunity given the high utilisation.
- Sustainable marine fuel presents the biggest carbon reduction.

PWC – High Utilisation Rental

Use Case Assumptions

ICOMIA

Annual Utilisation (hours)	156
Lifespan (years)	12.5

Results

OUR FUTURE

- An electric propulsion system produces the highest carbon reduction.
- Modelled on a very high utilisation of a commercial use case.
- Assuming that a range reduction is not a limitation.

19

Key Findings

Figure 2 - Lowest global warming potential (GWP) for each propulsion system relative to the baseline ICE of each craft in 2035 (kgCO₂eq/vh). Lower values result in lower CO₂ emissions over the lifetime of the craft.

Production of hydrotreated vegetable oil(HVO) for diesel powered boats assumed to be produced from waste feedstocks such as cooking oil. All sources of electricity are zero fossil fuel.

Decarbonisation Conclusions

- 1. There is "no one size fits all" solution
- LCA analysis is critical to achieving carbon reduction as there is significant CO₂ in the supply chain of materials & energy
- 3. Sustainable fuels are the leading path to meet the Paris Agreement for the existing and new fleet based on current technology
- 4. Current electric propulsion & H2 technology are only a solution for specific use cases
- 5. R&D and technological advancement are required for new & alternative technologies to be competitive (Range, Performance, Price, CO2)
- 6. Global safety protocols/standards are required for new technologies

Next Steps & Questions

Join us here at **11:45 tomorrow** when our technical leads offer a deeper discussion on the technical and data aspects of the report